Some Possibly Degenerate Elliptic Problems with Measure Data and Non Linearity on the Boundary
نویسنده
چکیده
The goal of this paper is to study some possibly degenerate elliptic equation in a bounded domain with a nonlinear boundary condition involving measure data. We investigate two types of problems: the first one deals with the laplacian in a bounded domain with measure supported on the domain and on the boundary. A second one deals with the same type of data but involves a degenerate weight in the equation. In both cases, the nonlinearity under consideration lies on the boundary. For the first problem, we prove an optimal regularity result, whereas for the second one the optimality is not guaranteed but we provide however regularity estimates. Résumé. Le but de cet article est l’étude d’équations elliptiques pouvant dégénérer, à données mesures, dans un domaine borné, et avec nonlinéarité au bord du domaine. On étudie deux types de problèmes : un premier est une équation elliptique non dégénérée dans un domaine borné avec des données mesures, supportées à la fois à l’intérieur du domaine et sur le bord de celui-ci. On traite dans une deuxième partie un problème elliptique dégénéré. On établit des résultat d’existence et de régularité dans les deux cas. Dans les deux problèmes considérés, la nonlinéarité est au bord du domaine.
منابع مشابه
Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملOn Neumann and oblique derivatives boundary conditions for nonlocal elliptic equations
Inspired by the penalization of the domain approach of Lions & Sznitman, we give a sense to Neumann and oblique derivatives boundary value problems for nonlocal, possibly degenerate elliptic equations. Two different cases are considered: (i) homogeneous Neumann boundary conditions in convex, possibly non-smooth and unbounded domains, and (ii) general oblique derivatives boundary conditions in s...
متن کاملOn the Spectral Properties of Degenerate Non-selfadjoint Elliptic systems of Differential Operators
متن کامل
Nonlinear Neumann Boundary Conditions for Quasilinear Degenerate Elliptic Equations and Applications
We prove comparison results between viscosity sub and supersolutions of degenerate elliptic and parabolic equations associated to, possibly non-linear, Neumann boundary conditions. These results are obtained under more general assumptions on the equation (in particular the dependence in the gradient of the solution) and they allow applications to quasilinear, possibly singular, elliptic or para...
متن کاملThe Probabilistic Brosamler Formula for Some Nonlinear Neumann Boundary Value Problems Governed by Elliptic Possibly Degenerate Operators
This paper concerns with boundary value problems as { L u+a0u = f in Ω, < ∇u, γ > +c0|u|m−1u = g on ∂Ω, where L is an elliptic possibly degenerate second order operator, a0, c0 are positive function, γ is an oblique exterior vector and m 1 . By means of some arguments close to the Dynamics Programming we prove that the viscosity solution admits a representation formula that can be considered as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010